Robotic Arm

Cole Pace, Caleb Lamca, Kaitlyn Davis Joel Gisleskog, and Colin Donnellan

NORTHERN ARIZONA UNIVERSITY

Project Description

Project Description

- Stroke is the leading cause of upper limb disability.
- Survivors often lose mobility in one arm, limiting daily activities.
- Goal: develop a waist-mounted robotic arm that
 - Offers active gravity compensation
 - Remains lightweight, low-profile, and energy efficient
 - Enables the arm to rest naturally by the user's side.
- Client: Dr. Zach Lerner, Associate Professor of Mechanical Engineering, NAU.
- Sponsorship: W.L Gore

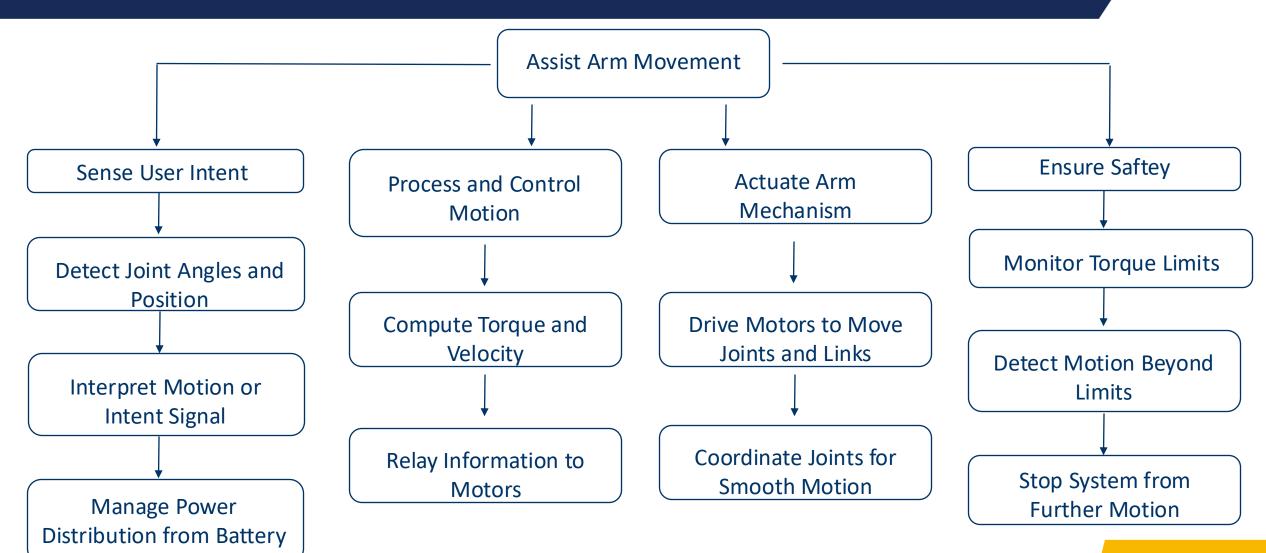
Black Box Model

Inputs

- Power Supply from Battery
- Sensor Feedback
- System Configuration
- User Input (Movement)

Robotic Arm System

- Control Processing
- Motor Control


Motion Planning

Outputs

- Arm Motion
- Power Consumption Data
- Alerts and Logs

Functional Decomposition

Concept Generation

We generated/evaluated 3 different components of our device.

Motor

3 different motors were given to us by our client to evaluate.

Joints

 Standard mechanical joints were researched and DOF were considered with end goal of the device.

Link Geometry

Different simple cross-sections were considered and later evaluated.

Concept Generation - Motor

Model	Rated Voltage (V)	Rated Power (W)	Rated Torque (Nm)	Rated Current (A)	Rated Speed (RPM)	Peak Torque (Nm)	Peak Current (A)	No-load Speed (RPM)	Reduction Ratio	Weight (G)	Size (diameter *length) MM	Driver Board	Encoder
AK45-36 KV80	24	33	8	2	40	24	6.5	52	36:1	340	φ55*54	Yes	Single
AK45-10 KV75	24	39	2.5	2.1	150	7	5	180	10:1	260	Ф53*43	Yes	Single
AK40-10 KV170	24	59	1.3	2.7	370	4.1	7.3	435	10:1	200	φ53*37	Yes	Single

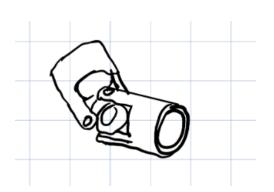
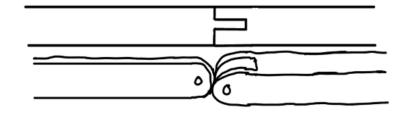

Figure 1: AK40-10 KV170 [1]

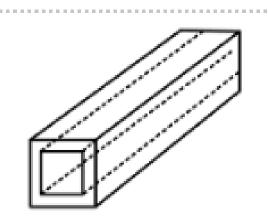

Figure 2: A45-10 KV75 [2]

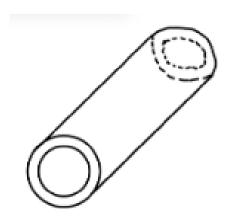

Figure 3: AK45-36 KV80 [3]

Concept Generation - Joints

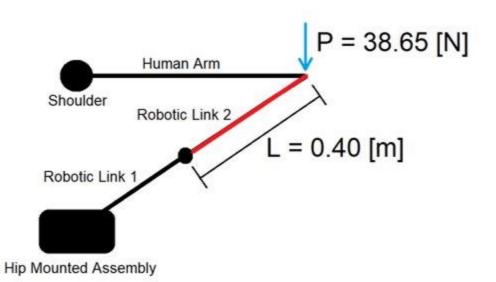
- Different mechanical joint designs with varying DOF and geometries were researched.
 - Ring Joint (2 DOF)
 - Pros: Allows for finer movements of the hand/arm.
 - Cons: Transmitting power to two different axis would increase cost and complexity.
 - Ball Joint (3 DOF)
 - Pros: Allows for smoother movement of the arm.
 - Cons: Requires three motors for each DOF.
 - Revolute Joint (1 DOF)
 - Pros: Simplifies transmission, only requires one motor.
 - Cons: Limited DOF leads to less smooth motion.

Concept Generation – Link Geometry


 Two different cross-sectional areas were evaluated.


O Hollow Rectangular:

- Pros: Strong directional stiffness while keeping weight low.
- Cons: Weak in torsion and off-axis bending.


Hollow Circular:

- Pros: Resists twisting far better than rectangular.
- Cons: Less stiffness per unit weight in one direction compared to rectangular.

Bending Stress of Varying Beam Geometries in Link 2

$$oldsymbol{\sigma}_{\max_c} = rac{M_{max} \cdot c}{I_c} = 15.4 \ [MPa] \leq 80.\ 33 \ [MPa]$$

$$oldsymbol{\sigma}_{\max_s} = rac{M_{max} \cdot c}{I_s} = 69.4~[MPa] \leq 80.~33~[MPa]$$

$$m{\sigma}_{allowable} = rac{\sigma_{yeild}}{FoS} = 80.33 \ [MPa]$$

 What will be the bending stress in linkage 2 given different geometries?

Compared 2 geometries; a circular tube (c), and a square tube (s).

Material was chosen as 6061-T6 Aluminum due to its lightweight and higher strength properties.

Both geometries are strong enough for the application, however, the circular tube is over 4times stronger.

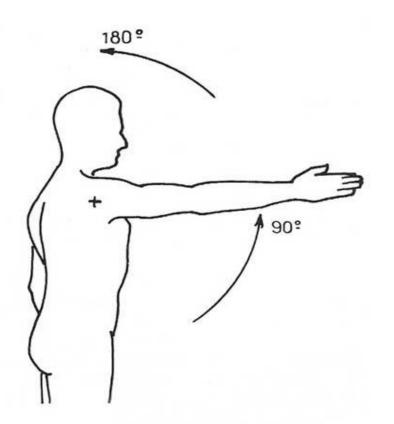
Achieving a FoS > 3 is only achievable with the circular cross-sectional geometry.

See Appendix A for assumptions, technical variables, and supporting calculations

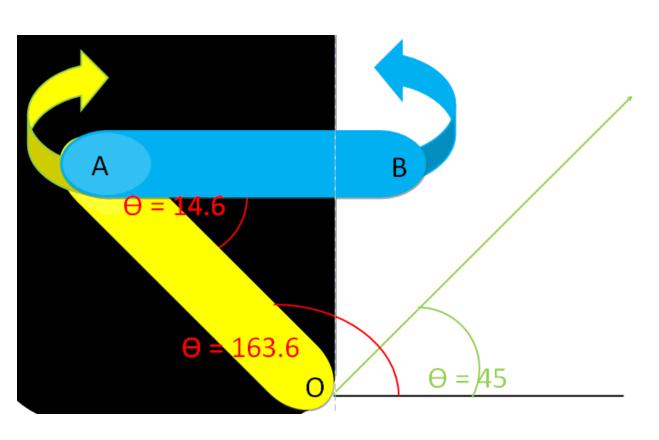
Capacity Required

What is the capacity needed for each of the three motors to last for 8 hours?

$$Capacity = \frac{Rated\ Power}{Rated\ Voltage} \cdot 8\ hours$$


AK45-36: 11Ah

AK45-10: 13Ah


AK40-10: 20Ah

Arm Motion

- Arm (shoulder flexion) velocity
- Shoulder flexion from hanging straight down (0 degrees) to straight forward (90 degrees)
- Average shoulder to elbow length: 330mm (13in)
- Average angular velocity: $w_{avg} = \frac{\Delta \theta}{Time \ t}$
- Using $\Delta \theta$ = 90 degrees and time 1.28 seconds.
- $w_{avg} = \frac{\Delta \theta}{Time \ t} = 1.227 \frac{rad}{s}$
- Linear velocity (elbow): $v = w_{avg} * r = 0.405 \frac{m}{s}$

Link Motion

$$0 = (0,0)$$

$$A_s = (-238mm, 70mm)$$

$$B_s = (10mm, 70mm)$$

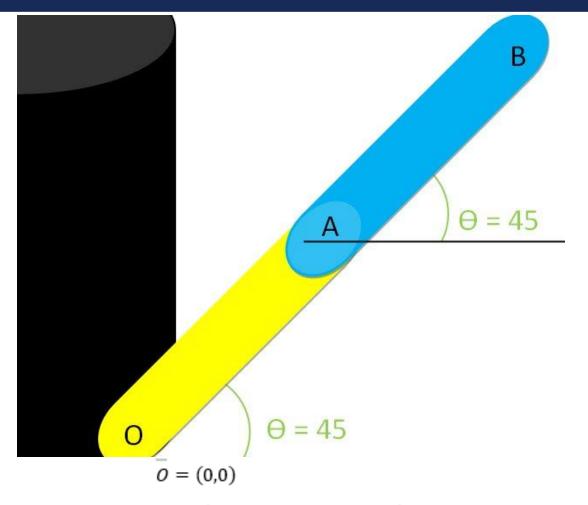
$$link\ 1 = 248mm$$

$$link\ 2 = 248mm$$

 $distance\ from\ elbow\ to\ waist=70mm$

$$\sin(\theta) = \left(\frac{opp}{hyp}\right)$$

$$\theta = 14.6 \ degrees$$


$$l_1 x_1 = l * \cos(\theta) = -237.9mm$$

$$l_1 y_1 = l * \sin(\theta) = -70mm$$

$$B_{x1}=10mm$$

$$B_{y1}=10mm$$

Link Motion

 $A_f = \left(175.36mm, 175.36mm\right)$

 $B_f = (350.7mm, 350.7mm)$

new position at 45 degrees

$$l_1 x_2 = l * \cos(\theta) = 175.36$$
mm

$$l_1 y_2 = l * \cos(\theta) = 175.36mm$$

$$B_{x2} = 350.7mm$$

$$B_{y2} = 350.7mm$$

time wanted to reach through 90 degrees = 1.28s

$$\theta_1 = 163.6 - 45 = 118.6 \ degrees$$

$$\theta_2 = 0 + 45 = 45 \ degrees$$

$$\omega_1 = \frac{\Delta \theta_1}{1.28} = -1.6171 \ rad/s$$

$$\omega_2 = \frac{\Delta \theta_2}{1.28} = +0.6136 \, rad/s$$

Torque at Joints

Remote Transmission

∘ Hip:

$$egin{aligned} au_1 &= g[m_1r_1 \,+\, m_2(L_1+r_2) \,+\, m_p(L_1+L_2)] \,+\, lpha_1 \Big[m_1r_1^2 + m_2(L_2+r_2)^2 + m_p(L_1+L_2)^2\Big] \end{aligned}$$

$$\tau_1 = 6.78 \ N \cdot m$$

$$au_{1S} = 10 \ N \cdot m$$

o Elbow:

$$au_2 \,=\, g[m_2 r_2 + m_p L_2] \,+\, lpha_2 ig[m_2 r_2^2 + m_p L_2^2ig]$$

$$\tau_2 = 2.94 \ N \cdot m$$

$$au_{2S} = 4.5 \ N \cdot m$$

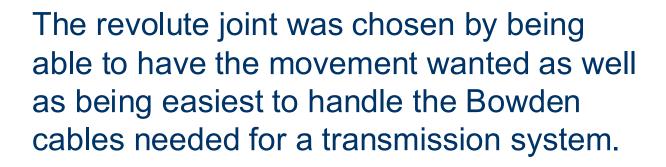
Torque at Joints

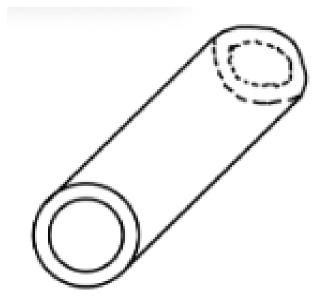
Direct Drive

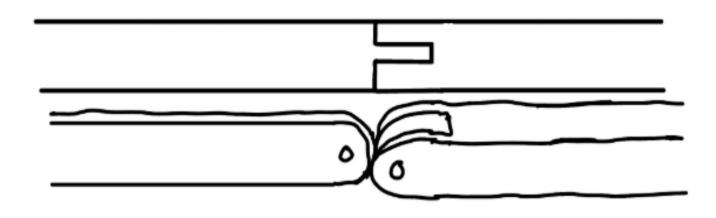
o Hip:

$$\sigma_{1} \, = \, g[m_{1}r_{1} \, + (m_{2} + m_{m2})(L_{1} + r_{2}) \, + \, m_{p}(L_{1} + L_{2})] \, + \, lpha_{1} \Big[m_{1}r_{1}^{2} + m_{2}(L_{2} + r_{2})^{2} + m_{p}(L_{1} + L_{2})^{2} \Big]$$

$$\tau_1 = 7.65 \ N \cdot m$$

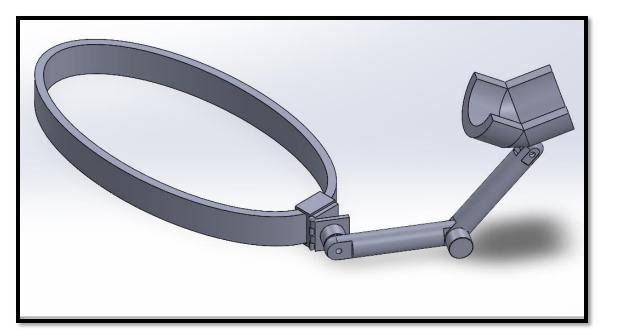

$$au_{1S} = 11.5 N \cdot m$$


Concept Evaluation

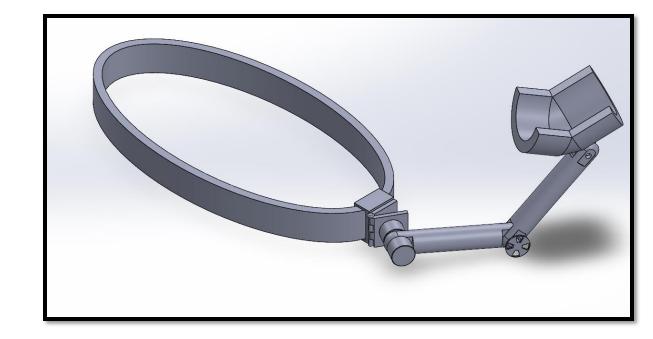

- We evaluated our sub-topics against our customer and engineering requirements.
 - Range of Motion: Determined by the joint selection. (3DOF)
 - Ease of Use: Determined by motor and joint selections.
 - Will be quantified by time to complete tasks.
 - Durability: Determined by link structure.
 - Will be quantified by stress analysis once more aspects of the device are determined.
 - Low-Profile: Combinations of joint structure, motor, and link structure.
 - Will be quantified by weight and the space that the device occupies.

Joint and Link Selection

The hollow circular tube were chosen for being stronger than the rectangular tube and would be able to hit a factor of safety of 3.

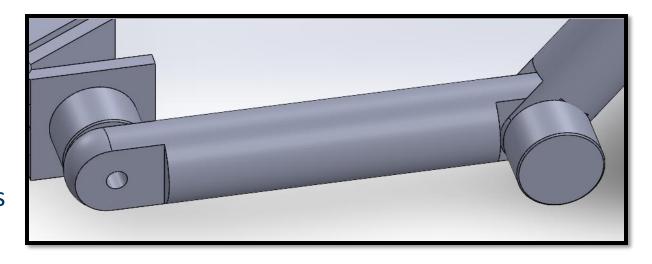

Motor Selection

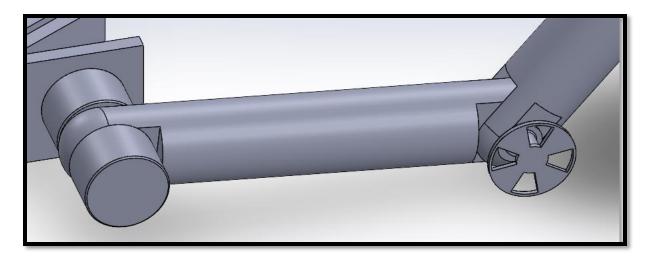
- We ultimately decided on:
 - AK45-36 KV80 Motor from CubeMars
 - Rated torque: 8 N*m
 - Peak Torque: 24 N*m
 - Can handle the torques for each joint in both a direct drive and transmission design.



Model

Direct Drive


Transmission



Model

Direct Drive System:

- 2 Motors, 1 at each link
- Motor directly transmits power
- Weight further from body increases the required output torque of the motor
- Less complex system fewer moving parts

Transmission System:

- 2 Motors at the hip
- Pulley with cable to transmit power
- Weight kept close to body reduces the required output torque of the motor
- More complex system more moving parts

Bill of Materials

Item	Price
2 AK45-36 motor	\$371.80
3D filament	\$100
Battery	\$300
Waist belt	\$50
Hinge	\$15

Budget

- Funding from W.L Gore: \$4000
- NAU 5% processing fee: -\$200
- Fundraising (at least %10): \$400
- Total Est. Budget: \$4200

 We have an estimate of \$3975 for total cost of possible items. The team will have a remaining balance of \$225. We will need to fundraise more to begin prototyping.

	Expenses	
Category	Items(s)	Cost
Tools and materials:	3D printer Parts	\$100
	3D printer Filament	\$100
Manufacturing:		\$300
Parts:	Motors	\$375
	Battery	\$300
	Miscellaneous Parts	\$700
Prototyping:	1st	\$1200
	2nd	\$900
TOTAL:		\$3975

Fundraising

- Need to accumulate 10% of the \$4,000 budget for a minimum of \$400 total
- In talks with multiple companies regarding sponsorships, services, or cash donations
- We plan to fundraise the entire 10% on or before week 8, or the testing of prototype 1

Schedule

Plan duration

Actual Start

Completed

Beyond Completion

	August				September				October				November				December			
	wk1			wk2 wk3 wk4 wk5			wk6 wk7 wk8 wk9			wk10 wk11 wk12 wk13				wk14 wk15 wk16						
Requirements/ research																				
Equations																				
Presentation 1																				
Conceptual designs																				
Fundraising																				
Presentation 2																				
Begin modelling																				
Testing prototype 1																				
Presentation 3																				
1st Prototype Demo																				
Begin prototype 2																				
Testing for Prototype 2																				
2nd Prototype Demo																				

Thank you And Any Questions?

Appendix

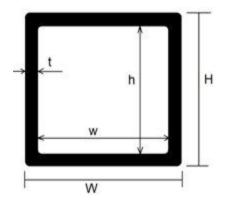
[1] Cubemars.com, 2025. https://www.cubemars.com/product/ak40-10-robotic-actuator.html

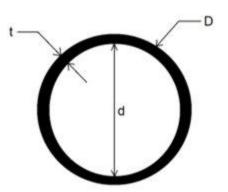
[2]"AK45-10 Robotic Actuator – 10:1 Gear Ratio, 260g, Φ53×43mm," *CubeMars*, 2025. https://www.cubemars.com/product/AK45-10-robotic-actuatuor.html

[3] "AK45-36 Robotic Actuator – Ultra-High Torque, 36:1 Gear Ratio," *CubeMars*, 2025. https://www.cubemars.com/product/AK45-36.html

Appendix A

Broad Assumptions:


- Average Human male arm mass = 1.89 [kg]
 - Average total body mass of 75 [kg]
 - Forearm Mass + Wrist Mass = 2.52% of Total Body Mass
- Arm is fully outstretched in front of the body
- Linkage at 45 degrees
- Treat connection to link 1 as fixed
- Robotic linkage is split into 2 parts of equal length (0.40 [m])
- Deflection due to Axial compression is negligible


Technical Variables:

- Material: 6061-T6 Aluminum
- FoS = 3
- $g = 9.81 \left[\frac{m}{s^2} \right]$
- $m_{total} = 75 [kg]$
- $\sigma_{yeild} = 241 [MPa]$
- a = 0.0525
- $E=6.89\cdot 10^{10}~[Pa]$ Elastic Modulus
- L = 0.40 [m]

- c = 0.015
- t = .003 [m]
- $\theta = 45^{\circ}$
- D = 0.254 [m]
- d = 0.0251 [m]
- H = 0.0254 [m]
- W = 0.0254 [m]
- h = 0.0251 [m]
- w = 0.0251 [m]

Geometries:

Calculations:

- $c = \frac{D}{2} = \frac{H}{2} = 0.0127 [m]$
- $m_{arm} = m_{total} \cdot a = 3.94 [kg]$
- $P = m_{arm} \cdot g = 38.65 [N]$
- $P_{\perp} = P \cdot \cos \theta = 27.33 [N]$
- $M_{max} = P_{\perp}L = 10.93 [Nm]$
- $I_c = \frac{\pi}{64} (D^4 d^4) = 9 \cdot 10^{-6} [m^4]$
- $ullet I_s = rac{HW^3 hw^3}{12} = 2 \cdot 10^6 \, \left[m^4
 ight]$
- $oldsymbol{\delta}_{oldsymbol{oldsymbol{eta}}_{oldsymbol{oldsymbol{eta}}}} = rac{P_oldsymbol{L}L^3}{3EI_c} = 0.00094~[mm]$
- $\delta_{\perp s} = rac{P_{\perp}L^3}{3EI_s} = 0.004 \ [mm]$